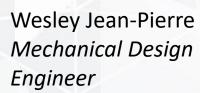


JTEKT Bearing Painter VDR 4


Senior Design Team 515

Wesley Jean-Pierre

Team Introductions

Mason Gibson Manufacturing Engineer

Max Jones Project Manager & Control Engineer

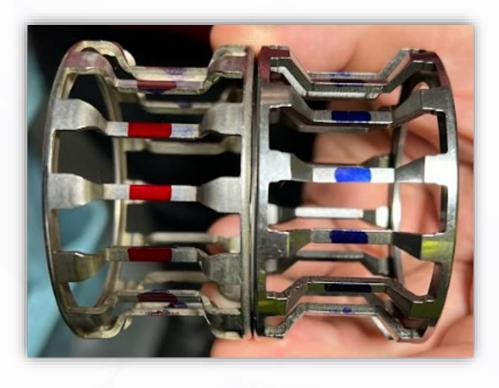
Andrew McClung Systems Integration Engineer

Anthony Wuerth Manufacturing & Design Engineer



Sponsors and Advisor

Engineering Mentor Coltin Fortner *Mechanical Engineer JTEKT North America*



Engineering Mentor Joshua Jones Senior Product Engineer JTEKT North America

<u>Academic Advisor</u> Shayne McConomy, Ph.D. Senior Design Professor

Project Objective

The objective of this project is to automate the process of painting needle bearing retainers.

Team 515 - VDR 4

Project Overview

Wesley Jean-Pierre

Team 515 – VDR 4

Key Goals

Accurately Apply Metal Paint to the Bearing

Accommodate Bearings from 7/8-2 ½ in. (Outer Diameter)

Automate Bearing Painting Process

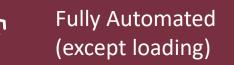
Wesley Jean-Pierre

Assumptions

Manually Loaded and Unloaded

Loaded with One Type of Bearing at a Time

A standard 120V Wall Outlet is Available



Paint With One Color per Load

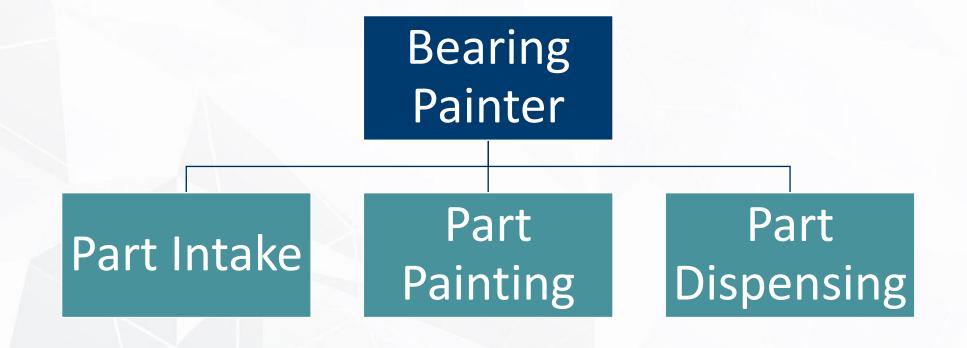
Wesley Jean-Pierre

Customer Needs

Fit Into Existing Fume Hood

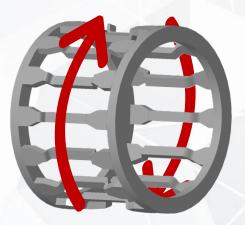
Accommodate Different Sized Bearings

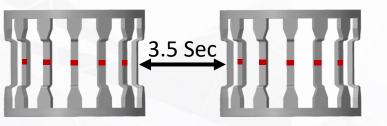
Able to Load 10 Bearings at a Time


3.5 Second Cycle Time

Paint Non-Working Surface Only

Defined Systems

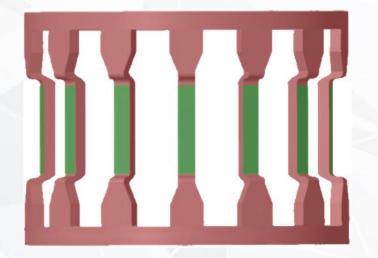


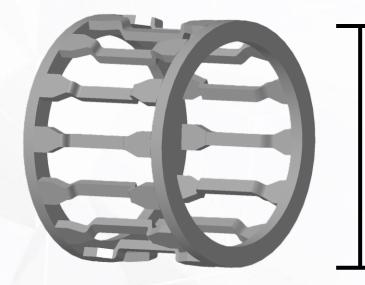

Critical Targets

Consistently paint full 360° of retainers

Cycle time of 3.5 seconds

Fit inside a pre-existing Fume Hood (2ft. X 3ft. X 3ft.)



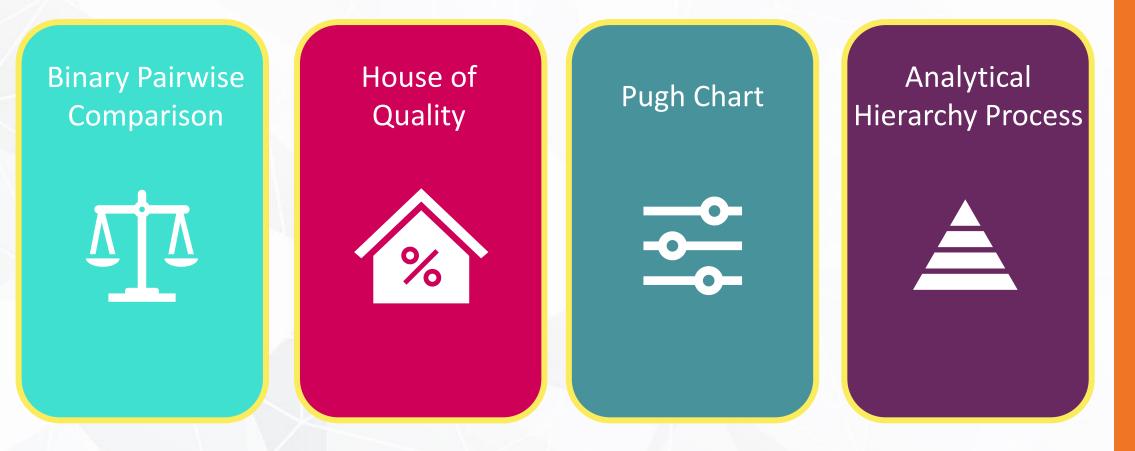


Critical Targets

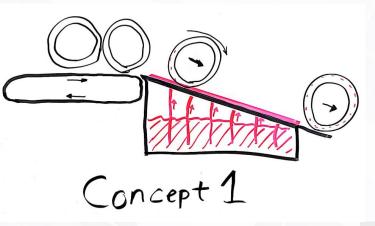
Limit Extraneous paint on working surface to 1 mm²

Accommodate retainers from 7/8 to 2 ½ inches in diameter

Outer Diameter

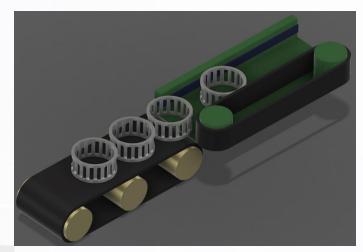

Concept Selection

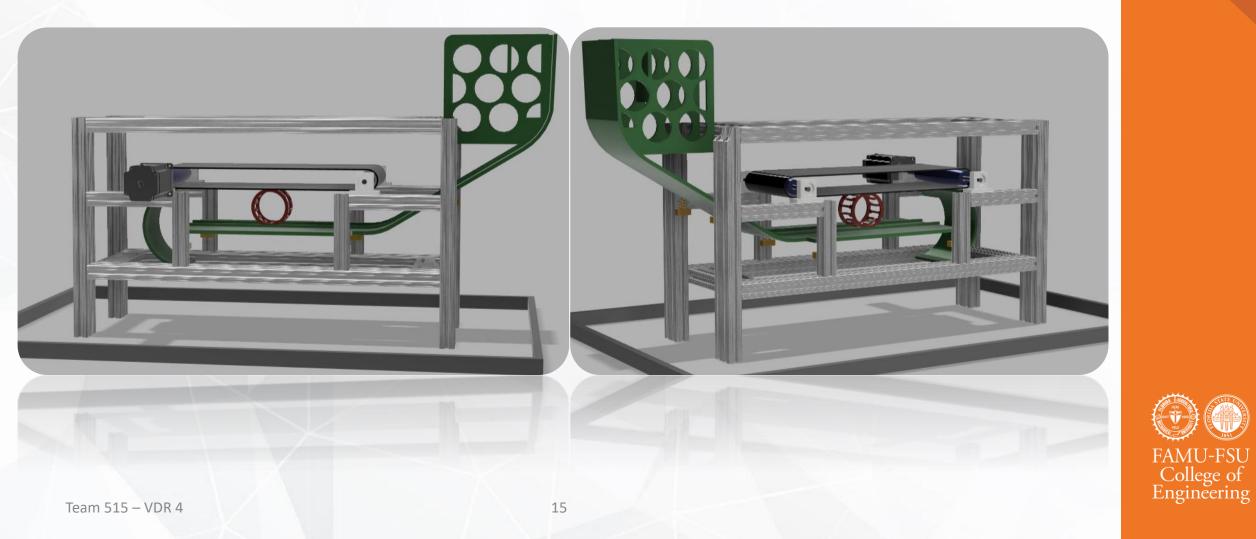
Anthony Wuerth

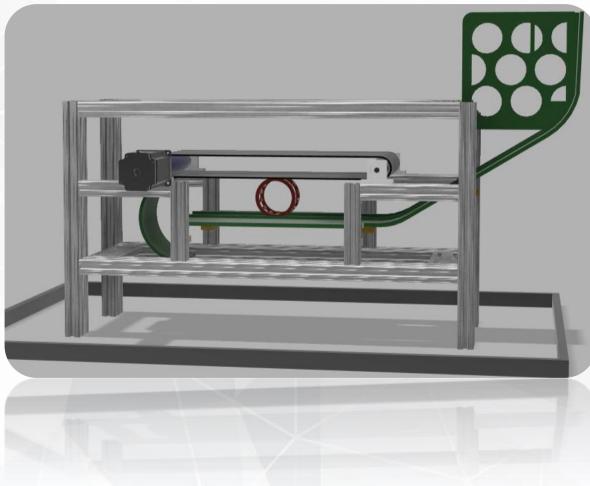

Team 515 – VDR 4

Selection Process




Concept Selection

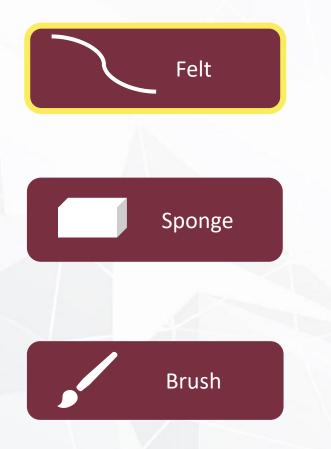

Inverted Treadmill

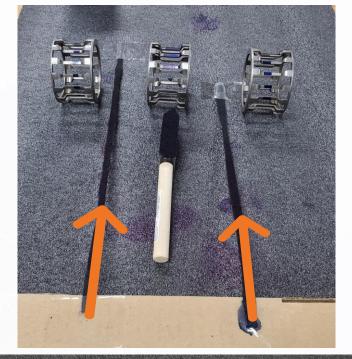

Double Conveyor

Improved CAD Model

Improvements

- Hopper addition
 - Removal of pinch point prior to painting
 - Adjustment of painting mechanism


Improvements



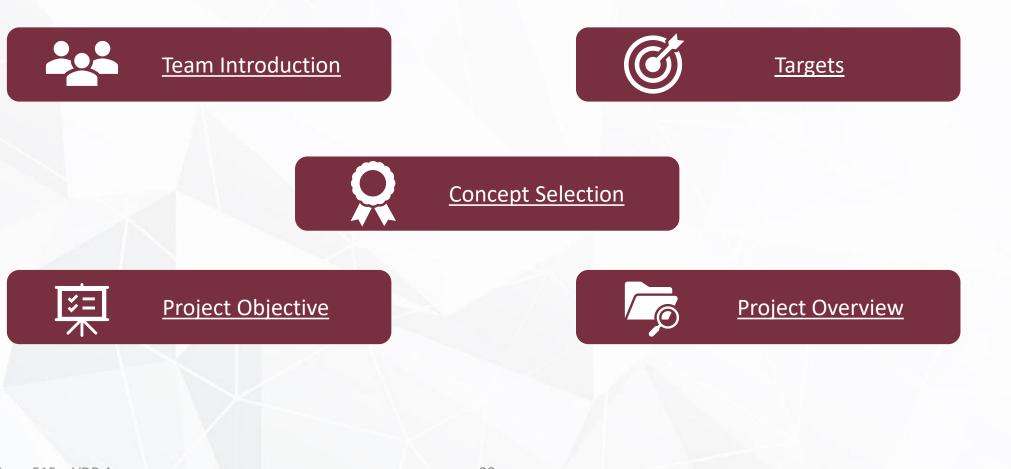
- Copper pipe holds Dykem from reservoir
- Felt pad is replaceable
- Minimizes fumes

Testing Procedure

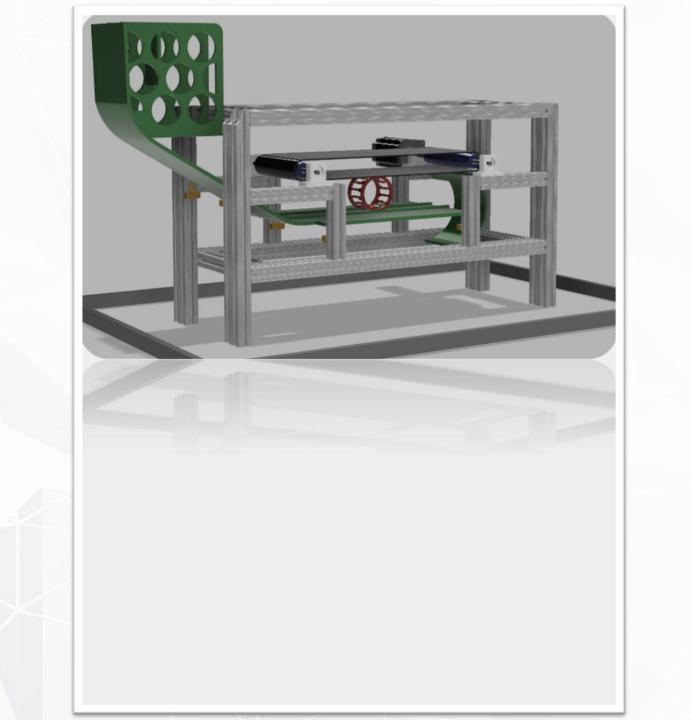
Future Work

Prototyping Painting System

Begin Building Frame


Design Analysis

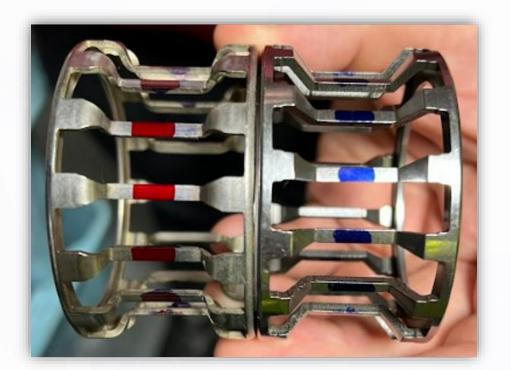
Further Improve CAD Model

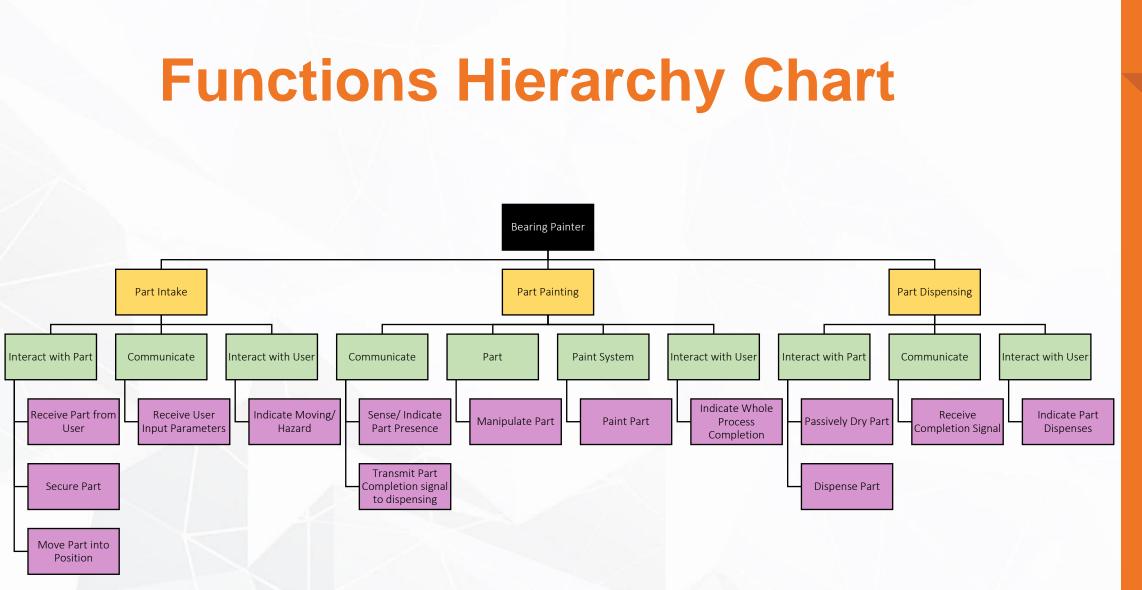

Team 515 - VDR 4

Questions?

FAMU-FSU College of Engineering

Team 515 – VDR 4




Retainer Painting

Some Customers Require Part Marking To Help Distinguish Similar Parts

- Low Production Runs
- Tedious, Manual Process
 - Operator Pulled From Position
 - Decreased Efficiency

Binary Pairwise Comparison Chart									
Customer Requirements	1	2	3	4	5	6	7	8	Total
1. Atomated Process	-	1	0	0	0	1	0	1	3
2. Cycle Time	0	-	1	0	0	1	0	1	3
3. Paint Correct Area	1	0	-	1	1	1	1	1	6
4. Fit in Fume Hood	1	1	0	-	0	1	0	1	4
5. Process Range of Sizes	1	1	0	1	-	1	0	1	5
6. Quickly Configurable	0	0	0	0	0	-	0	1	1
7. Use Multiple Colors	1	1	0	1	1	1	-	0	5
8. Indicate Operation Status	0	0	0	0	0	0	1	-	1
Total	4	4	1	3	2	6	2	6	n - 1 = 7

Binary Pairwise Comparison

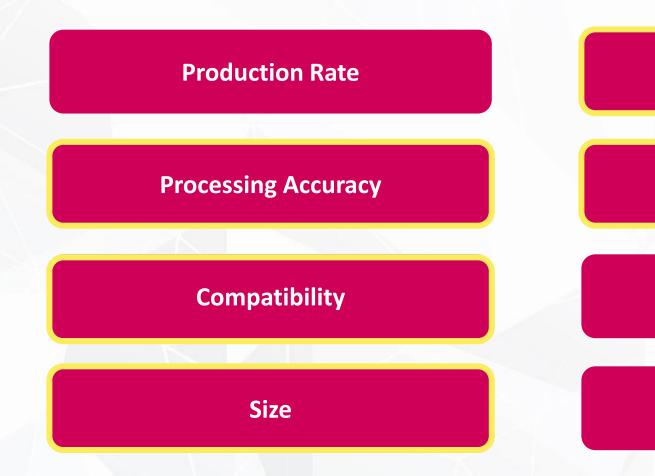
Function

- Tool to assist in ranking the importance of customer requirements
- Assigns each requirement an importance weight factor
- Requirements and weight factors assist in the development of the House of Quality

Results

The 3 most important requirements were found to be:

- **1.** Paint correct area
- 2. Process range of sizes
- 3. Use multiple colors



Engineering Characteristic									
Improvement Direction	Improvement Direction		-	↑	\downarrow	↑	\downarrow	\downarrow	-
Units		Part/min	mm^2	Diameter	Sqft	Part/Load	%	%	Part/invl
Customer Requirements	Importance Weight Factor	Production Rate	Processing Accuracy	Compatibility	Size	Part Intake Limit	Automatic Operation %	Reliability	Maintenance Interval
1. Atomated Process	3	9		3	9	9	9		
2. Cycle Time	3	3	9	9		9	9	3	3
3. Paint Correct Area	6	1	9	9				1	1
4. Fit in Fume Hood	4			3	9	9			
5. Process Range of Sizes	5	1	9	9	9	3	9		
6. Quickly Configurable	1	3	3	9	3	9	3		
7. Use Multiple Colors	5	3	3		9	3	3	1	3
8. Indicate Operation Status	1	3		1		3	3	3	1
Raw Sco	ore (628)	68	144	157	156	132	120	23	31
Relative V	Veight %	10.83	22.93	25.00	24.84	21.02	19.11	3.66	4.94
Ra	nk Order	6	3	1	2	4	5	8	7

FAMU-FSU College of Engineering

Andrew McClung

House of Quality

Part Intake Limit

Automatic Operation %

Reliability

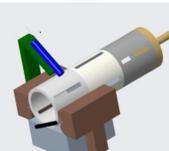
Maintenance Interval

					Concepts					
	Engineering Characteristics	RANDBRIG HT RB 60	Linear Processor	Inverted Treadmill	Double Conveyor	Felt Ramp	Electromagnet	Spline	Pore Track	Gravity Ramp
	Compatibility		S	S	-	S	-	S	+	+
6	Size		S	+	S	+	S	S	-	-
	Part Intake Limit	- F	S	+	S	S	S	S	S	S
	Processing Accuracy	MU	S	S	S	-	-	S	S	-
	Automatic Operation %	ΙΨ	S	+	+	S	+	S	S	-
	Total Pluses	<u>ц</u> -	0	3	1	1	1	0	1	1
	Total Satisfactory		5	2	3	3	2	5	3	1
	Total Minuses		0	0	1	1	2	0	1	3

		Concepts			
Engineering Characteristics	Linear Procesor	Inverted Treadmill	Double Conveyor	Felt Ramp	Pore Track
Compatibility		S	S	+	-
Size		+	S	-	-
Part Intake Limit	DATUM -	+	+	S	S
Processing Accuracy		+	+	-	-
Automatic Operation %	Γ¥α	+	+	S	S
Total Pluses	-	4	3	1	0
Total Satisfactory		1	2	2	2
Total Minuses		0	0	2	3

Pugh Chart

Bearing with spline attached


 \square

Cylinder with retractable spline

D Port Looding Port Pointing Port Dispensing A1 Port Dispension A1

DATUM

29

	[C] Matrix								
	Analytical Hierarchy Process	А	А	А	А	А			
В	Engineering Charactersitic	Compatibility	Size	Part Intake Limit	Processing Accuracy	Automatic Operation %	Average		
В	Compatibility	1	3.000	3.000	7.000	5.000	3.800		
В	Size	0.333	1	0.333	5.000	0.333	1.400		
В	Part Intake Limit	0.333	3.000	1	7.000	1.000	2.467		
В	Processing Accuracy	0.143	0.200	0.143	1	0.200	0.337		
В	Automatic Operation %	0.200	3.000	1.000	5.000	1	2.040		
	Total	2.010	10.200	5.476	25.000	7.533	10.044		
	Average	0.402	2.040	1.095	5.000	1.507			

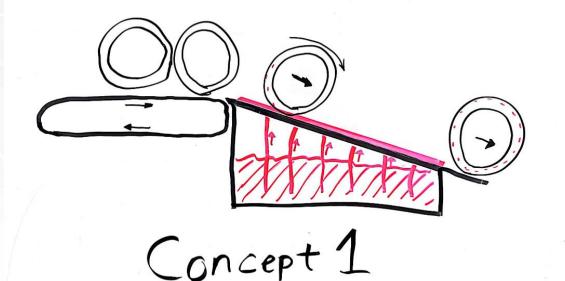
Concept	Alternative Value
Inverted Treadmill	0.401
Double Conveyor	0.271
Felt Ramp	0.327

Analytical Hierarchy Process

Function

- Utilizes matrices to compare importance of criteria
- Criteria are Engineering characteristics & design concepts

Results


- Compatibility is the highest weighted engineering characteristic
- Inverted Treadmill with the highest rating of importance on criteria

Concept	Alternative Value
Inverted Treadmill	0.401
Double Conveyor	0.271
Felt Ramp	0.327

Mason Gibson

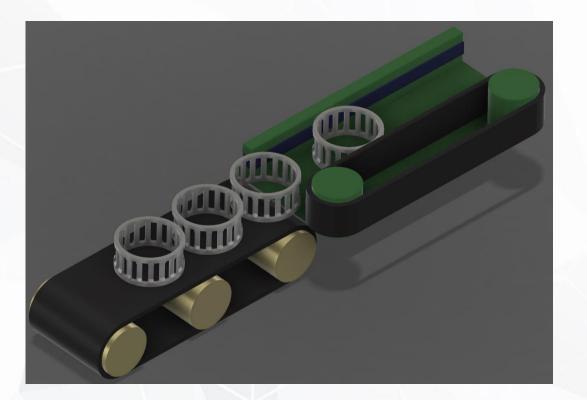
Medium Fidelity Concept 1

Key Features

- Conveyor belt feeds the bearings
- Bearing rolls down a ramp to be painted
- Paint felt strip fed by a reservoir of Dykem underneath

Mason Gibson

High Fidelity Concept 2 (Inverted Treadmill)



Key Features

- Parts are moved along a belt to a surface with Dykem
- Pushed along the Dykem by the bottom of the belt
- Allows for compact design

High Fidelity Concept 3 (Double Conveyor)

Key Features

- Belt brings the parts into the painting system
- One belt moves the parts along while the other side paints
- Benchmarked from a labeling machine

Backup Slides

- This is 10-point
- This is 15–point Times
- This is 20-point
- This is 25–point
- This is 30-point
- This is 35-point
- This is 40-point
- •This is 50-point
- •This is 60-point 37

